Open Library - открытая библиотека учебной информации. Полная система уравнений движения самолета Уравнение расчета движения самолета

Анализ нелинейной системы дифференциальных уравнений ((2.1) - (2.7)) и их решение представляет определенные трудности. Поэтому первым шагом на пути их исследования является линеаризация связей между переменными, получение линейной математической модели самолета как объекта управления с последующим анализом динамических свойств.

Для получения линеаризованных уравнений движения необходимо установить зависимость сил и моментов от величин, и V а также от регулирующих факторов.

Сила тяги двигателя P зависит от внутренних параметров, а также от внешних условий, характеризуемых скоростью полета V, давлением p н и температурой T н в атмосфере.

Аэродинамические силы и моменты принято представлять в виде

где c x и c y - коэффициенты сопротивления и подъемной силы;

m z - коэффициент момента тангажа;

b A - длина хорды крыла;

S - площадь крыльев;

q - скоростной напор, вычисляемый по формуле:

Коэффициенты c x и c y являются функциями и V, а коэффициент m z функцией и в.

Для линеаризации уравнений (2.1) - (2.7) с учетом соотношений (2.8) - (2.9) воспользуемся известным методом представления нелинейных зависимостей в виде линейных отклонений относительно невозмущенного движения (в предположении малости этих отклонений). В качестве невозмущенного движения можно взять горизонтальный полет с постоянной скоростью. При этом будем пренебрегать влиянием нестационарности обтекания на аэродинамические характеристики самолета. Предположим, что невозмущенное движение самолета характеризуется параметрами V 0 ,H 0 , 0 , 0 , 0 ,не зависящими от времени. Пусть в некоторый момент времени вследствие возмущений, действующих на самолет, имеем:

где V, H - малые приращения.

Следовательно, возмущенное движение самолета состоит из невозмущенного движения и движения, характеризуемого малыми отклонениями. Такая трактовка возмущенного движения законна до тех пор, пока приращения V, и H остаются малыми, что имеет место для устойчивых систем. Так как одним из основных назначений системы управления является обеспечение устойчивости режима полета, то законность использования линеаризованных уравнений можно считать обеспеченной.

Разлагая силы P, X, Y и момент M z в ряды Тейлора по малым приращениям и ограничиваясь линейными членами приращений, вместо уравнений (2.1) - (2.5) получим:



где члены с верхними индексами обозначают частные производные по соответствующим переменным в окрестности невозмущенного движения.

Предположим, что невозмущенный полет является горизонтальным, тогда 0 =0. Для частных производных, входящих в уравнения (2.10), можно с учетом (2.8) написать:

в этих выражениях М - число Маха.

В целях дальнейших преобразований воспользуемся соотношениями:

или, если учесть, что

где a - скорость звука, то

Кроме того, воспользуемся зависимостью между высотой H и параметрами атмосферы и T H

Градиент температуры,

R - газовая постоянная.

Пользуясь выражением (2.13), найдем:

Следовательно

В целях сокращения записи введем безразмерные величины:

где - аэродинамическая постоянная времени самолета, а также вместо приращений, и будем записывать, и, придавая последним величинам смысл тех же приращений.

Воспользовавшись соотношениями (2.11) - (2.16), приведем уравнения (2.10) к виду:

r - радиус инерции самолета.

Система дифференциальных уравнений (2.17) является линейной математической моделью продольного движения самолета.

Динамика самолета в продольной плоскости характеризуется двумя составляющими: короткопериодической и длиннопериодической . В короткопериодическом движении очень резкие изменения претерпевают параметры и, характеризующие движение самолета относительно центра масс. При длиннопериодическом движении изменяются параметры и V, характеризующие положение центра масс самолета. Поэтому в уравнениях (2.17) можно положить = 0, считая, что за время изменения угловых координат и скорость полета практически не изменяется . Другими словами продольная ось самолета может совершать колебания относительно вектора скорости центра масс.

Если учесть сделанные замечания и принять, что равновесие продольных сил при возмущении по и не нарушается, то вместо системы (2.17) получим для случая горизонтального полета.

Самолет движется в воздухе по действием аэродинамической силы , силы тяги двигателей и силы тяжести . С аэродинамической силой и ее проекциями на оси различных систем координат мы познакомились при изучении основ аэродинамики. Сила тяги создается силовой установкой самолета. Вектор обычно располагается в базовой плоскости самолета и образует некоторый угол с осью 0X связанной системы координат, но для простоты мы будем полагать, что этот угол равен нулю, а сам вектор приложен в центре масс.

Полет самолета можно условно разбить на несколько этапов: взлет, набор высоты, горизонтальный полет, снижение и посадка. Самолет также может совершать вираж и другие маневры. На некоторых этапах полета движение самолета может быть как установившимся, так и неустановившимся. При установившемся движении самолет летит с постоянной скоростью, при неизменных углах атаки, крена и скольжения. Ниже мы будем рассматривать только установившееся движение на этапах горизонтального полета, набора высоты и снижения.

Установившийся горизонтальный полет – это прямолинейный полет с постоянной скоростью на постоянной высоте (см. рис. 39). Уравнения движения центра масс самолета запишутся в этом случае следующим образом:

(48)

Поскольку угол атаки a мал (при этом cos a » 1, а sin a » 0), то можно записать:

Рис. 39. Схема сил, действующих на самолет в установившемся

горизонтальном полете

Если первое из этих равенств не будет выполняться, то скорость самолета будет либо увеличиваться, либо уменьшаться, т.е. не будет выполняться условие установившегося движения. Если же подъемная сила не равна силе тяжести, то самолет будет либо подниматься, либо снижаться, а это значит, что не будет выполняться условие горизонтального полета. Из этого равенства, зная формулу подъемной силы (35), можно получить величину скорости, необходимую для выполнения горизонтального полета V г.п.

Учитывая, что G = mg (где m – масса самолета, а g – ускорение свободного падения), можно записать:

, (50)

(51)

Из этой формулы видно, что скорость горизонтального полета зависит от массы самолета, плотности воздуха r (которая зависит от высоты полета), площади крыла S кр и коэффициента подъемной силы C ya . Поскольку C ya напрямую зависит от угла атаки a, то каждому значению скорости горизонтального полета будет соответствовать единственное значение угла атаки. Поэтому для обеспечения установившегося горизонтального полета с требуемой скоростью летчик задает определенную тягу двигателей и величину угла атаки.

Установившийся набор высоты – прямолинейное движение самолета вверх с постоянной скоростью. Схема сил, действующих на самолет при установившемся наборе высоты с углом наклона траектории q, показана на рис. 40.

Рис. 40. Схема сил, действующих на самолет при установившемся

наборе высоты (угол атаки принят малым и не показан)

В этом случае уравнения движения примут вид:

(52)

Необходимо отметить, что при наборе высоты тяга двигателей P уравновешивает не только силу лобового сопротивления X a , как в горизонтальном полете, но и составляющую силы тяжести G sinq. Подъемная сила Y a при этом требуется меньшая, поскольку G cosq < G .

Важной характеристикой самолета является его скороподъемность – вертикальная скорость набора высоты V y . Из рис. 40 видно, что:

. (53)

Установившееся снижение – прямолинейное движение самолета вниз с постоянной скоростью. На рис. 41 показана схема сил, действующих на самолет при снижении.

Рис. 41. Схема сил, действующих на самолет при установившемся

снижении (угол атаки принят малым и не показан)

Уравнения движения для установившегося снижения имеют вид:

(54)

Если мы поделим первое уравнение системы (54) на второе, то получим:

. (55)

Из уравнения (55) видно, что установившееся снижение возможно только, если тяга меньше лобового сопротивления (P < X a ). Обычно снижение происходит при малых значениях тяги (при тяге малого газа), поэтому можно принять, что P » 0. Такой режим полета называется планированием. В этом случае:

. (56)

Важной характеристикой является дальность планирования L пл с заданной высоты H пл. Легко видеть, что:

. (58)

Из формулы (58) видно, что чем выше аэродинамическое качество самолета, тем больше будет дальность планирования.

Обычно полёт самолёта рассматривают как движение в пространстве абсолютно жёсткого тела. При составлении уравнений движения используют законы механики, позволяющие в самом общем виде записать уравнения движения центра масс самолёта и его вращательного движения вокруг центра масс.

Исходные уравнения движения вначале записывают в векторной форме

m - масса самолета;

Равнодействующая всех сил;

Главный момент внешних сил самолёта, вектор суммарного вращающего момента;

Вектор угловой скорости системы координат;

Момент количества движения самолёта;

Знак «» обозначает векторное произведение. Далее переходят к обычной скалярной записи уравнений, проектируя векторные уравнения на некоторую систему координатных осей.

Получаемые общие уравнения оказываются настолько сложными, что, по существу, исключают возможность проведения наглядного анализа. Поэтому в аэродинамике летательных аппаратов вводятся различные упрощающие приёмы и предположения. Очень часто оказывается целесообразным разделить полное движение самолёта на продольное и боковое. Продольным называется движение с нулевым креном, когда вектор силы тяжести и вектор скорости самолёта лежат в его плоскости симметрии. Далее будем рассматривать только продольное движение самолёта (рис. 1).

Это рассмотрение будем вести с использованием связанной ОXYZ и полусвязанной ОX e Y e Z e систем координат. За начало координат обеих систем принимается точка, в которой расположен центр тяжести самолета. Ось ОX связанной системы координат проводится параллельно хорде крыла и называется продольной осью самолета. Нормальная ось ОY перпендикулярна оси ОX и расположена в плоскости симметрии самолета. Ось ОZ перпендикулярна к осям ОX и ОY, а следовательно, и к плоскости симметрии самолета. Она называется поперечной осью самолета. Ось ОX e полусвязанной системы координат лежит в плоскости симметрии самолета и направлена по проекции на неё вектора скорости. Ось ОY e перпендикулярна оси ОX e и расположена в плоскости симметрии самолета. Ось ОZ e перпендикулярна к осям ОX e и ОY e .


Остальные обозначения, принятые на рис. 1: - угол атаки, - угол тангажа, - угол наклона траектории, - вектор воздушной скорости, - подъемная сила, - сила тяги двигателей, - сила лобового сопротивления, - сила тяжести, - угол отклонения рулей высоты, - момент тангажа, вращающий самолёт вокруг оси ОZ.

Запишем уравнение продольного движения центра масс самолёта

где - суммарный вектор внешних сил. Представим вектор скорости с использованием его модуля V и угла его поворота относительно горизонта:

Тогда производная вектора скорости по времени запишется в виде:

С учётом этого уравнения продольного движения центра масс самолёта в полусвязанной системе координат (в проекциях на оси ОX e и ОY e) примут вид:

Уравнение вращения самолёта вокруг связанной оси OZ имеет вид:

где J z - момент инерции самолета относительно оси OZ, M z - суммарный вращающий момент относительно оси OZ.

Полученные уравнения полностью описывают продольное движение самолета. В курсовой работе рассматривается только угловое движение самолёта, поэтому далее будем учитывать только уравнения (4) и (5).

В соответствии с рис. 1, имеем:

угловая скорость вращения самолёта вокруг поперечной оси OZ (угловая скорость тангажа).

При оценке качества управляемости самолета большое значение имеет перегрузка. Она определяется как отношение действующей на самолёт суммарной силы (без учёта веса) к силе веса самолёта. В продольном движении самолёта используют понятие «нормальная перегрузка». По ГОСТ 20058-80 она определяется как отношение проекции главного вектора системы сил, действующих на самолёт, без учёта инерционных и гравитационных сил, на ось OY связанной системы координат к произведению массы самолёта на ускорение свободного падения:

Переходные процессы по перегрузке и угловой скорости тангажа определяют оценку летчиком качества управляемости продольного движения самолета.

В случае анализа динамики самолета, совершающего полет со скоростью, значительно меньшей орбитальной, уравнения движения по сравнению с общшм случаем полета летательного аппарата могут быть упрощены, в частности, можно пре­небречь вращением и сферичностью Земли. Кроме этого сделаем еще ряд упрощающих допущений.

только квазистатически, для текущего значения скоростного напора.

При анализе устойчивости и управляемости самолета будем использовать следующие прямоугольные правые системы осей координат.

Нормальная земная система координат OXgYgZg. Эта система осей координат имеет неизменную ориентацию относительно Земли. Начало координат совпадает с центром масс (ЦМ) самолета. Оси 0Xg и 0Zg лежат в горизонтальной плоскости. Их ориентация может быть принята произвольно, в зависимости от целей реша­емой задачи. При решении навигационных задач ось 0Xg часто направляют к Северу параллельно касательной к меридиану, а ось 0Zg направляют на Восток. Для анализа устойчивости и управляемости самолета удобно принять направление ориента­ции оси 0Xg совпадающим по направлению с проекцией вектора скорости на горизонтальную плоскость в начальный момент вре­мени исследования движения. Во всех случаях ось 0Yg направлена вверх по местной вертикали, а ось 0Zg лежит в горизонтальной плоскости и образует вместе с осями OXg и 0Yg правую систему осей координат (рис. 1.1). Плоскость XgOYg называют местной вертикальной плоскостью.

Связанная система координат OXYZ. Начало координат рас­положено в центре масс самолета. Ось ОХ лежит в плоскости симметрии и направлена вдоль линии хорд крыла (либо парал­лельно какому-либо другому, фиксированному относительно само­лета направлению) к носовой части самолета. Ось 0Y лежит в плоскости симметрии самолета и направлена вверх (при гори­зонтальном полете), ось 0Z дополняет систему до правой.

Углом атаки а называется угол между продольной осью самолета и проекцией воздушной скорости на плоскость OXY. Угол положителен, если проекция воздушной скорости самолета на ось 0Y отрицательна.

Углом скольжения р называется угол между воздушной ско­ростью самолета и плоскостью OXY связанной системы коорди­нат. Угол положителен, если проекция воздушной скорости на поперечную ось положительна.

Положение связанной системы осей координат OXYZ относи­тельно нормальной земной системы координат OXeYgZg может быть полностью определено тремя углами: ф, #, у, называемыми углами. Эйлера. Последовательно поворачивая связанную систему

координат на каждый из углов Эйлера, можно прийти к любому угловому положению связанной системы относительно осей нор­мальной системы координат.

При исследовании динамики самолетов используются следу­ющие понятия углов Эйлера.

Угол рыскания г]) - угол между некоторым исходным напра­влением (например, осью 0Xg нормальной системы координат) и проекцией связанной оси самолета на горизонтальную пло­скость. Угол положителен, если ось ОХ совмещается с проекцией продольной оси на горизонтальную плоскость поворотом вокруг оси OYg по часовой стрелке.

Угол тангажа # - угол между продольно# осью самолета ОХ и местной горизонтальной плоскостью OXgZg, Угол положителен, если продольная ось находится выше горизонта.

Угол крена у - угол между местной вертикальной плоскостью, проходящей через ось ОХ у и связанной осью 0Y самолета. Угол положителен, если ось О К самолета совмещается с местной вер­тикальной плоскостью поворотом вокруг оси ОХ по часовой стрелке. Углы Эйлера могут быть получены последовательными поворотами связанных осей относительно нормальных осей. Бу­дем считать, что нормальная и связанная системы координат в начале совмещены. Первый поворот системы связанных осей произведем относительно оси О на угол рыскания г]; (ф совпадает с осью OYgXрис. 1.2)); второй поворот -относительно оси 0ZX на угол Ф (‘& совпадает с осью OZJ и, наконец, третий поворот произведем относительно оси ОХ на угол у (у совпадает с осью ОХ). Проектируя векторы ф, Ф, у, являющиеся составляющими

вектора угловой скорости движения самолета относительно нор­мальной системы координат, на связанные оси, получим уравне­ния связи между углами Эйлера и угловыми скоростями вращения связанных осей:

со* = Y + sin *&;

o)^ = i)COS’&cosY+ ftsiny; (1.1)

со2 = ф cos у - ф cos Ф sin у.

При выводе уравнений движения центра масс самолета необ­ходимо рассматривать векторное уравнение изменения количества движения

-^- + о>xV)=# + G, (1.2)

где ю - вектор скорости вращения связанных с самолетом осей;

R - главный вектор внешних сил, в общем случае аэродинами-

ческих сил и тяги; G - вектор гравитационных сил.

Из уравнения (1.2) получим систему уравнений движения ЦМ самолета в проекциях на связанные оси:

т (гЗ?~ + °hVx ~ °ixVz) = Ry + G!!’ (1 -3)

т iy’dt “Ь У - = Rz + Gz>

где Vx, Vy, Vz - проекции скорости V; Rx, Rz - проекции

результирующих сил (аэродинамических сил и тяги); Gxi Gyy Gz - проекции силы тяжести на связанные оси.

Проекции силы тяжести на связанные оси определяются с ис­пользованием направляющих косинусов (табл. 1.1) и имеют вид:

Gy = - G cos ft cos у; (1.4)

GZ = G cos d sin y.

При полете в атмосфере, неподвижной относительно Земли, проекции скорости полета связаны с углами атаки и скольжения и величиной скорости (V) соотношениями

Vх = V cos a cos р;

Vу = - V sin a cos р;

Связанная

Выражения для проекций результирующих сил Rx, Rin Rz имеют следующий вид:

Rx = - cxqS — f Р cos ([>;

Rty = cyqS p sin (1.6)

где cx, cy, сг - коэффициенты проекций аэродинамических сил на оси связанной системы координат; Р - гяга двигателей (обычно Р = / (У, #)); Фн - угол заклинення двигателя (фя > 0, когда проекция вектора тяги на ось 0Y самолета-положительна). Далее везде будем принимать = 0. Для определения входящей в выражение для скоростного напора q величины плотности р (Н) необходимо интегрировать уравнение для высоты

Vx sin ft+ Vy cos ft cos у - Vz cos ft sin у. (1.7)

Зависимость p (H) может находиться по таблицам стандартной атмосферы либо по приближенной формуле

где для высот полета И с 10 000 м К ж 10~4 . Для получения замкнутой системы уравнений движения самолета в связанных осях уравнения (13) необходимо дополнить кинематическими

соотношениями, которые позволяют определять углы ориентации самолета у, ft, г]1 и могут быть получены из уравнений (1.1):

■ф = Кcos У — sin V):

■fr = «у sin у + cos Vi (1-8)

Y = со* - tg ft (©у cos y - sinY),

а угловые скорости cov, со, coz определяются из уравнений движе­ния самолета относительно ЦМ. Уравнения движения самолета относительно центра масс могут быть получены из закона измене­ния момента количества движения

-^-=MR-ZxK.(1.9)

В этом векторном уравнении приняты следующие обозначения: ->■ ->

К - момент количества движения самолета; MR - главный мо­мент внешних сил, действующих на самолет.

Проекции вектора момента количества движения К на подвиж­ные оси в общем случае записываются в следующем виде:

К t = I х^Х? ху®у I XZ^ZI

К, Iху^х Н[ IУ^У Iyz^zi (1.10)

К7. - IXZ^X Iyz^y Iz®Z*

Уравнения (1.10) могут быть упрощены для наиболее распростра­ненного случая анализа динамики самолета, имеющего плоскость симметрии. В этом случае 1хг = Iyz - 0. Из уравнения (1.9), используя соотношения (1.10), получим систему уравнений дви­жения самолета относительно ЦМ:

h -jf — — hy («4 — ©Ї) + Uy — !*) = MRZ-

Если за сси OXYZ принять главные оси инерции, то 1ху = 0. В связи с этим дальнейший анализ динамики самолета будем производить, используя в качестве осей OXYZ главные оси инер­ции самолета.

Входящие в правые части уравнений (1.11) моменты являются суммой аэродинамических моментов и моментов от тяги двигателя. Аэродинамические моменты записываются в виде

где тХ1 ту, mz - безразмерные коэффициенты аэродинамических моментов.

Коэффициенты аэродинамических сил и моментов в общем случае выражаются в виде функциональных зависимостей от ки­нематических параметров движения и параметров подобия, за­висящих от режима полета:

у, г mXt = F(а, р, а, Р, coXJ coyj со2, бэ, ф, бн, М, Re). (1.12)

Числа М и Re характеризуют исходный режим полета, поэтому при анализе устойчивости или управляемых движений эти парамет­ры могут быть приняты постоянными величинами. В общем случае движения в правой части каждого из уравнений сил и моментов будет содержаться достаточно сложная функция, определяемая, как правило, на основе аппроксимации экспериментальных данных.

Нарис. 1.3 приведены правила знаков для основных пара­метров движения самолета, а также для величин отклонений органов и рычагов управления.

Для малых углов атаки и скольжения обычно используется представление аэродинамических коэффициентов в виде разложе­ний в ряд Тейлора по параметрам движения с сохранением только первых членов этого разложения. Такая математическая модель аэродинамических сил и моментов для малых углов атаки доста­точно хорошо согласуется с летной практикой и экспериментами в аэродинамических трубах. На основании материалов работ по аэродинамике самолетов различного назначения примем следу­ющую форму представления коэффициентов аэродинамических сил и моментов в функции параметров движения и углов отклонения органов управления:

сх ^ схо 4~ сх (°0»

У ^ СУ0 4" с^уа 4" С!/Ф;

сг = cfp + СгН6„;

тх - itixi|5 — f — ■Ь тхха>х-(- тх -f — /л* (І -|- — J — Л2ЛП6,!

о (0.- (0^- р б б„

ту = myfi + ту хо)х + ту Уыу + р + га/бэ + ту бн;

тг = тг (а) + тг zwz /я? ф.

При решении конкретных задач динамики полета общая форма представления аэродинамических сил и моментов может быть упрощена. Для малых углов атаки многие аэродинамические коэффициенты бокового движения являются константами, а про­дольный момент может быть представлен в виде

mz (а) = mzo + т£а,

где mz0 - коэффициент продольного момента при а = 0.

Входящие в выражение (1.13) составляющие, пропорциональ­ные углам аир, обычно находятся из статических испытаний моделей в аэродинамических трубах или расчетом. Для нахожде-

НИЯ производных, twx (у) необходимо проведение

динамических испытаний моделей. Однако в таких испытаниях обычно происходит одновременное изменение угловых скоростей и углов атаки и скольжения, в связи с чем при измерениях и обра­ботке одновременно определяются величины:

СО — СО- ,

тг* = т2г —mz;


0) , R. Юу I в.

mx* = тх + тх sin а; ту* = Шух ту sin а.

СО.. (О.. ft СО-. СО.. ft

ту% = т,/ -|- tiiy cos а; тх% = тху + тх cos а.

В работе показано, что для анализа динамики самолета,

особенно на малых углах атаки, допустимо представление момен-

тов в виде соотношений (1.13), в которых производные mS и т$

приняты равными нулю, а под выражениями т®х, и т. д.

понимаются величины m“j, т™у [см. (1.14)], определяемые в экс­перименте. Покажем, что это допустимо, ограничив рассмотрение задачами анализа полета с малыми углами атаки и скольжения при постоянной скорости полета. Подставив в уравнения (1.3) выра­жения для скоростей Vх, Vy, Vz (1.5) и производя необходимые преобразования, получим

= % COS а + coA. sina — f -^r }